Looming advancements that excite me

I may expand on this post later, but in rough form here’s a list off the top of my head of upcoming advancements that I believe herald tremendous potential:

  • Blockchains – I’ve spoken about this before, but secure, distributed ledgers yield all kinds of cool apps, such as smart contracts, distributed and secure computing, non-fiat currency, disintermediated frictionless value transfer anywhere at the speed of light, democratized access to equity, a very complementary platform to connect the internet of things (especially the data those sensors generate), many functions of government (ownership, marriage certificates, voting), banking the 3 billion unbanked among many..
  • Apple’s own baseband tech – I can’t wait for an Apple Watch that is always connected. Right now this isn’t possible due to power constraints, but if Apple keeps kicking Qualcomm’s butt like it has been and keeps hiring baseband engineers, it will be able to develop its own wireless tech for its devices integrated into its A-series SOC’s. This also opens the possibility for Apple to really make its customers lives easier by mediating the carriers – imagine if you paid Apple for your data, and Apple negotiated with all of the carriers to provide the best data at the lowest prices. They would also be able to make some really interesting moves in mesh networking, if they decided to.
  • Wireless power – the Internet of Things is already taking off, but we still have to plug everything in. This isn’t so much of a problem for lamps or garage doors, but it is for anything we wear or take with us. Imagine a wireless power standard that could beam a couple of watts to any device in a room. Suddenly, wireless headphones and connected clothing seem a lot more feasible. As well, as wireless power becomes more ubiquitous, phone/laptop/watch battery life becomes much less of a concern. Devices could be engineered with absolutely no ports, making them more durable and aesthetically pleasing. I think the friction of plugging things in is hugely underestimated, and the use cases that will emerge from ambient power (even a small amount) will be truly amazing. There’s some promising technologies on the horizon
  • Solid voice and image recognition – “ambient intelligence” is a term often used to describe the coming age when we are surrounded by smart, connected devices and sensors. Benedict Evens often equates the proliferation of connectivity with that of motors a generation ago – my grandparents could count on one hand the number of motors in their lives when they were my age, whereas now we are awash in hundreds of invisible motors. The internet is going to become so ubiquitous that we will not be able to count how many connected things surround us. Artificial intelligence, like Google Now and Siri, will be very well positioned to “speak” to all of these connected devices and clearly, warmly control them by communicating with us. We’re very close to artificial intelligence that can understand us as good as we understand each other, and see the world as well as we do. As this artificial intelligence will always be connected, it will be able to access billions of databases around the world to yield unfathomable intelligence everywhere we go.
  • Genetic Engineering – life can be thought of as a huge store of engineering research painstakingly conducted over billions of years. J. Craig Venter, George Church, and others have been hammering on for some time about the potential that genetic engineering holds for us. As the costs of genetic sequencing have decreased faster than Moore’s law in recent years, we are finally able to take a peek under the hood of life and learn all of the secrets that it holds. We will very realistically be able to modify existing permutations of life to fit our desires  – e.g. planting a seed that grows into a house, engineering disease out of our bodies and engineering in superhuman strength, intelligence, endurance, even predisposition for happiness.
  • Solar Power – much like the costs of genetic sequencing, solar panels have become exponentially cheaper and significantly more efficient in recent years. They’re so good now that they can often achieve parity with, or even exceed, centralized grid-based alternatives. While this is applying difficult pressure to power companies in the short term, as progress continues energy will become cleaner, more reliable, and cheaper for the world’s economies. We still desperately need breakthroughs in batteries, but I’m hopeful that graphene, superconductors, or some kind of innovative energy storage solution will emerge to complement the rise of solar power.
  • Electric Cars – they’re significantly simpler, more efficient, and cleaner than internal combustion engine (ICE) alternatives. The Tesla S P85D can go 0-60 in 3.1 seconds (faster than the McLaren F1), carry five adults, and is so dependable that Tesla themselves offer a 10 year, unlimited mile warranty on the powertrain even if you don’t service it like they recommend. Combine this tech with wireless charging and advances in image recognition, and you have yourself a paradigm-shifting transportation revolution that will see transportation costs for individuals plummet and economy-wide capital efficiency soar.

There’s a lot more, those are just the ones that are top of mind. I’ve written this post fast and dirty, so forgive it for not being as structured or succinct as it could be.

You may also like

Leave a Reply

Your email address will not be published. Required fields are marked *